81n^2-10=90

Simple and best practice solution for 81n^2-10=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 81n^2-10=90 equation:


Simplifying
81n2 + -10 = 90

Reorder the terms:
-10 + 81n2 = 90

Solving
-10 + 81n2 = 90

Solving for variable 'n'.

Move all terms containing n to the left, all other terms to the right.

Add '10' to each side of the equation.
-10 + 10 + 81n2 = 90 + 10

Combine like terms: -10 + 10 = 0
0 + 81n2 = 90 + 10
81n2 = 90 + 10

Combine like terms: 90 + 10 = 100
81n2 = 100

Divide each side by '81'.
n2 = 1.234567901

Simplifying
n2 = 1.234567901

Take the square root of each side:
n = {-1.111111111, 1.111111111}

See similar equations:

| 4n^2+4n-11=0 | | 20x^2-15xy+12x-9y= | | 5x+11=44 | | 4a+5b=5 | | 3+2y=38 | | (-2/3)d+3=11 | | 157+14=2(5y+6) | | 3x-2y=38 | | x+6/x | | 18-3x=6x | | w^2-6x+9=0 | | b*3= | | (10-7b)2= | | 9x^2-8+34x=0 | | x+5x=264 | | 25x+6-28x=1-7 | | 2x^3-5x^2-10x+3=0 | | 53y=26(2y+15) | | (x-13)(x-1)(x+7)(4x+9)=0 | | x+4+x-4=100 | | x+x+4+x-4=100 | | x+x+4=100 | | (15-4)+3-(12-5*2)+(5+16/4)-5+(10-23) | | (x-1)(4x+9)(x+7)(x-13)=0 | | (15-4)+3-(12-5x2)+(5+16/4)-5+(10-23) | | 4x+22=6 | | x(x+4)+(x-4)=100 | | -.6d+3=11 | | 256^1/4 | | .6d+3=11 | | 104-6c+3= | | 14=5x-31 |

Equations solver categories